Какие бывают маткружки
Добавлено: Сб, 02 июл 2005, 22:48
Эта тема продолжает темы "Как учить математике?" и "Какие бывают матшколы (и матклассы)"
Мне известны, по крайней мере, три типа математических кружков.
1. Кружок школьного учителя. Учитель дает "задачи повышенной трудности" из своей методички или из журнала "Математика в школе". Тематика не отходит далеко от школьной программы. Как показывает опыт, такие занятия обычно помогают лучше учиться в школе и подготовиться к вступительным экзаменам в технический вуз.
2. Кружок в духе Пойи. Известный математик Дьердь Пойа (он же Георг Полиа) написал три замечательных книги по методологии решения задач с примерами, доступными школьникам: "Как решать задачу", "Математическое открытие", "Математика и правдоподобные рассуждения". Там даются серии задач, которые могут быть решены на основе единой методологии. Мое внимание на эти книги обратил Андрей Леонидович Лихтарников - мой наставник по преподаванию в ЮМШ и ЛМШ - и в студенческие годы, когда я вел кружки, в основном придерживался этой методологии, сам стал строить такие серии, это, помогло и в научной работе. Занятия "по Пойе" идут легко, отсев в кружке маленький. Структура занятия отличается от того, что написано на этом сайте в разделе "Как учить математике?" - чтобы ученикам стал привычен метод Пойи, надо много задач решать вместе с ними "хором", а не давать для самостоятельного решения. Уже когда перестал вести кружки, я "встретился" с методом Пойи еще раз в 1992 году в США, когда наткнулся на объявление в Питтсбургском университете: "Объявляется набор школьников на летний курс по книге Пойи "Как решать задачу". Курс бесплатный, книга выдается бесплатно, но взамен ученики должны в течение нескольких часов участвовать в экспериментах на факультете психологии".
3. Кружок по московской системе (хочется сказать "по системе Константинова" - см. тему "Как преподавать математику?") Небольшой объем вводного лекционного материала плюс большое колическтво задач для самостоятельного решения, причем содержащих самостоятельный вывод важных теоретических утверждений. И сплошной контроль за решением с привлечением студентов-ассистентов. Это позволяет сделать кружок огромным: хоть 50, хоть 100 учеников (конечно, потом он сократится, сам или не без помощи руководителей). Последние годы (или уже десятилетия?) по этой схеме работают многие кружки в Петербурге, в частности Центр математического образования при 239 школе, возглавляемый Сергеем Евгеньевичем Рукшиным. Отличие от того, что делают москвичи, у питерцев в том, что питерцы больше ориентируются не на движение в определенных темах, а на успех в олимпиадах высокого уровня и действительно добиваются этого успеха, вместе с тем, питерские кружки сегодня - это хорошо налаженный механизм очень серьезной и фундаментальной математической подготовки. Прочитать подробно про кружки Рукшина и кое-что еще про ленинградские и петербургские математические кружки можно в статье выпускника этих кружков - доцента кафедры алгебры СПбГУ И.Б.Жукова http://altruism.ru/sengine.cgi/5/7/8/12/14/ (ссылку указал ОИ), но эта статья - вершки, а кто хочет посмотреть корешки - зайдите на сайт, где общаются преподаватели и выпускники питерских математических кружков http://www.livejournal.com/userinfo.bml?user=matkruzhok
Мне известны, по крайней мере, три типа математических кружков.
1. Кружок школьного учителя. Учитель дает "задачи повышенной трудности" из своей методички или из журнала "Математика в школе". Тематика не отходит далеко от школьной программы. Как показывает опыт, такие занятия обычно помогают лучше учиться в школе и подготовиться к вступительным экзаменам в технический вуз.
2. Кружок в духе Пойи. Известный математик Дьердь Пойа (он же Георг Полиа) написал три замечательных книги по методологии решения задач с примерами, доступными школьникам: "Как решать задачу", "Математическое открытие", "Математика и правдоподобные рассуждения". Там даются серии задач, которые могут быть решены на основе единой методологии. Мое внимание на эти книги обратил Андрей Леонидович Лихтарников - мой наставник по преподаванию в ЮМШ и ЛМШ - и в студенческие годы, когда я вел кружки, в основном придерживался этой методологии, сам стал строить такие серии, это, помогло и в научной работе. Занятия "по Пойе" идут легко, отсев в кружке маленький. Структура занятия отличается от того, что написано на этом сайте в разделе "Как учить математике?" - чтобы ученикам стал привычен метод Пойи, надо много задач решать вместе с ними "хором", а не давать для самостоятельного решения. Уже когда перестал вести кружки, я "встретился" с методом Пойи еще раз в 1992 году в США, когда наткнулся на объявление в Питтсбургском университете: "Объявляется набор школьников на летний курс по книге Пойи "Как решать задачу". Курс бесплатный, книга выдается бесплатно, но взамен ученики должны в течение нескольких часов участвовать в экспериментах на факультете психологии".
3. Кружок по московской системе (хочется сказать "по системе Константинова" - см. тему "Как преподавать математику?") Небольшой объем вводного лекционного материала плюс большое колическтво задач для самостоятельного решения, причем содержащих самостоятельный вывод важных теоретических утверждений. И сплошной контроль за решением с привлечением студентов-ассистентов. Это позволяет сделать кружок огромным: хоть 50, хоть 100 учеников (конечно, потом он сократится, сам или не без помощи руководителей). Последние годы (или уже десятилетия?) по этой схеме работают многие кружки в Петербурге, в частности Центр математического образования при 239 школе, возглавляемый Сергеем Евгеньевичем Рукшиным. Отличие от того, что делают москвичи, у питерцев в том, что питерцы больше ориентируются не на движение в определенных темах, а на успех в олимпиадах высокого уровня и действительно добиваются этого успеха, вместе с тем, питерские кружки сегодня - это хорошо налаженный механизм очень серьезной и фундаментальной математической подготовки. Прочитать подробно про кружки Рукшина и кое-что еще про ленинградские и петербургские математические кружки можно в статье выпускника этих кружков - доцента кафедры алгебры СПбГУ И.Б.Жукова http://altruism.ru/sengine.cgi/5/7/8/12/14/ (ссылку указал ОИ), но эта статья - вершки, а кто хочет посмотреть корешки - зайдите на сайт, где общаются преподаватели и выпускники питерских математических кружков http://www.livejournal.com/userinfo.bml?user=matkruzhok